Title 「2015年度学部シラバス」、Folder 「40_専門科目-02_電気電子情報工学課程
Detail of syllabus is in the following.
Subject Name   Electronic Device and Photonics Engineering  
Teacher Name   KAWAI Akira,Tomoyuki Sasaki  
Semester   the first term   Term   The first semester  
Lecture Form   lecture   Credit  
Matter of Prepare    
Instructor’ room /contact information KAWAI: Room 404, Denki-building 1, Ext 9512
SASAKI: Room 604, Denki-building 1, Ext 9530  
Purpose and objective Goals Based on quantum theory, which is the foundation of modern science, students study the foundation of electronic properties with a focus on the behavior of electrons and the basic knowledge required to understand the electronic properties of solids and acquired from the viewpoints of electrons, atoms, molecules and crystals.
The electron-photon interaction process and the operating principle of laser devices, which are the keys for studying photonics, are learned. Students also study foundational properties of light waves based on Maxwell’s equations. Additionally, main photonic devices for optical communication systems are learned.
[Educational Objectives]
(C) Acquire technical knowledge required for engineers in the electrical, electronics and information engineering field
(C-1) Acquire basic technical knowledge required for engineers in all three fields:  electric energy system and control engineering, electronic devices and photonics engineering, and information, telecommunication and control systems.
- Study a history of the development of the quantum theory
- Understand the states of quantization and discretization 
- Understand the Schrodinger equation 
- Understand the atomic structure 
- Understand the chemical bond and crystal structure. 
- Understand the energy band structure of solids 
- Understand the basic properties of metals, semiconductors and insulators
- Understand the operating principle of lasers.
- Understand the foundational properties of light waves including polarization, refraction, and reflection.  
Keywords Quantum mechanics, electronic property, Schrodinger equation, atomic structure, crystal structure, metal, semiconductor, dielectric material, magnetic material, photon, spontaneous emission, stimulated emission, stimulated absorption, laser, photodiode, Maxwell’s equations, polarization, refraction, reflection, absorption, wavelength dispersion, optical fiber, optical amplifier, optical modulator  
Contents and method [The first half]
First, quantum theory is outlined as the foundation of electronic property with a focus on the history of the development of quantum theory. Next, lectures are given on atomic structures, crystal structures, and energy band structuress. Lectures on the behavior and role of electrons in the properties of materials, semiconductors, dielectric materials, and magnetic materials are also given. Teaching materials are provided in the class. By working through the exercise problems, understanding is further deepened.
[The latter half]
First, the foundation of electron-photon interactions, the operating principle of lasers, and the properties of laser beams are outlined. Next, students study properties of light waves based on Maxwell’s equations. Photodetectors, optical fibers, optical amplifiers, and optical modulators, which are primary devices for optical communication system, are also outlined. Teaching materials with the exercise problems are provided in the class.  
Topics [The first half]
Week 1: Formation of the Quantum Theory and Schrodinger Equation
Week 2: Electron Configuration and Periodic Table
Week 3: Crystal Structure and Lattice Specific Heat
Week 4: Energy Band Theory of Solids and Electronic Conduction
Week 5: Foundational Properties of Metals and Semiconductors
Week 6: Foundational Properties of Dielectric Materials
Week 7: Foundational Properties of Magnetic Materials 
Week 8: Examination (of W1 to 7)
[The latter half]
Week 9: Photon
Week 10: Foundation of Lasers
Week 11: Photodetectors
Week 12: Light Waves 1
Week 13: Light Waves 2
Week 14: Optical Communications 1
Week 15: Optical Communications 2
Week 16: Examination (of W9 to 15)  
Textbooks [The first half] Printed materials provided in the class.
[The latter half] Printed materials provided in the class.  
Reference materials [The first half]
- The Institute of Electrical Engineering of Japan, Denshibussei Kiso (The Institute of Electrical Engineering of Japan).
- C. Kittel, Kotai Butsurigaku Nyumon (Maruzen)
- S. Aoki, Denshi Bussei Kogaku (The Institute of Electronics, Information and Communication Engineering)
- T. Matsuzawa et al., Denshi Bussei (Morikita)
[The latter half]
- H. Ito, Photonics Kiso (Asakura)
- Y. Suematsu and K. Kobayashi, Photonics (Ohm)
- J. Sakai, Hikari Electronics Nyumon (Morikita)
- T. Jinbo, Hikari Electronics (Ohm)  
Evaluation method and Assessment points The final grade is determined by the results of examinations of W1 to 7 (50%) and of W9 to 15 (50%). Students have to get grades of more than 60% in each of the examinations. Students who scored less than 60% in each of the examination may have to take a makeup test. Students who failed in the examinations have to take the whole lecture again in the next year. No academic credit is granted to students who have low attendance rates or do not complete the research projects. The information in this course is the foundation of electronic devices and photonics engineering but covers a wide range. It is impossible to understand them and retain an understanding simply by attending lectures. Therefore, preparations for and reviews of the classes are essential.  
Prerequisite / other notes The study of this course is developed and deepened in “Electric and Electronic Materials A,” “Electric and Electronic Materials B,” “Photonics 1,” “Photonics 2,” and “Optical Properties of Materials.”  
Reference homepage [The first half] http://kawai.nagaokaut.ac.jp
[The latter half] http://hertz.nagaokaut.ac.jp  
Reference URLs  
Copyright (c) 2012 NTT DATA KYUSHU CORPORATION. All Rights Reserved.